알라딘

스파크 완벽 가이드 - 스파크를 활용한 빅데이터 처리와 분석의 모든 것

빌 체임버스, 마테이 자하리아 (지은이), 우성한, 이영호, 강재원 (옮긴이) | 한빛미디어
  • 등록일2022-09-21
  • 파일포맷pdf
  • 파일크기6 M  
  • 지원기기아이폰, 아이패드, 안드로이드, 태블릿, PC
  • 보유현황보유 1, 대출 0, 예약 0
  • 평점 평점점 평가없음

책소개

스파크 활용과 배포, 유지 보수까지 전체적 흐름을 포괄적으로 안내하는 바이블관련 도서

저자소개

2014년에 몇몇 연구 프로젝트에 스파크를 도입했습니다. 데이터브릭스에서 제품 관리를 맡고 있으며 사용자들이 다양한 아파치 스파크 애플리케이션을 개발할 수 있는 환경을 만들기 위해 노력하고 있습니다. 또한 정기적으로 스파크와 관련된 블로그를 작성하고 콘퍼런스 발표와 밋업에 참여하고 있습니다. UC버클리 대학교 정보대학원에서 정보 관리와 시스템 분야의 석사학위를 취득했습니다.

목차

Part 1 빅데이터와 스파크 간단히 살펴보기



CHAPTER 1 아파치 스파크란

1.1 아파치 스파크의 철학

1.2 스파크의 등장 배경

1.3 스파크의 역사

1.4 스파크의 현재와 미래

1.5 스파크 실행하기

1.6 정리



CHAPTER 2 스파크 간단히 살펴보기

2.1 스파크의 기본 아키텍처

2.2 스파크의 다양한 언어 API

2.3 스파크 API

2.4 스파크 시작하기

2.5 SparkSession

2.6 DataFrame

2.7 트랜스포메이션

2.8 액션

2.9 스파크 UI

2.10 종합 예제

2.11 정리



CHAPTER 3 스파크 기능 둘러보기

3.1 운영용 애플리케이션 실행하기

3.2 Dataset: 타입 안정성을 제공하는 구조적 API

3.3 구조적 스트리밍

3.4 머신러닝과 고급 분석

3.5 저수준 API

3.6 SparkR

3.7 스파크의 에코시스템과 패키지

3.8 정리



Part 2 구조적 API: DataFrame, SQL, Part 2Dataset



CHAPTER 4 구조적 API 개요

4.1 DataFrame과 Dataset

4.2 스키마

4.3 스파크의 구조적 데이터 타입 개요

4.4 구조적 API의 실행 과정

4.5 정리



CHAPTER 5 구조적 API 기본 연산

5.1 스키마

5.2 컬럼과 표현식

5.3 레코드와 로우

5.4 DataFrame의 트랜스포메이션

5.5 정리



CHAPTER 6 다양한 데이터 타입 다루기

6.1 API는 어디서 찾을까

6.2 스파크 데이터 타입으로 변환하기

6.3 불리언 데이터 타입 다루기

6.4 수치형 데이터 타입 다루기

6.5 문자열 데이터 타입 다루기

6.6 날짜와 타임스탬프 데이터 타입 다루기

6.7 null 값 다루기

6.8 정렬하기

6.9 복합 데이터 타입 다루기

6.10 JSON 다루기

6.11 사용자 정의 함수

6.12 Hive UDF

6.13 정리



CHAPTER 7 집계 연산

7.1 집계 함수

7.2 그룹화

7.3 윈도우 함수

7.4 그룹화 셋

7.5 사용자 정의 집계 함수

7.6 정리



CHAPTER 8 조인

8.1 조인 표현식

8.2 조인 타입

8.3 내부 조인

8.4 외부 조인

8.5 왼쪽 외부 조인

8.6 오른쪽 외부 조인

8.7 왼쪽 세미 조인

8.8 왼쪽 안티 조인

8.9 자연 조인

8.10 교차 조인(카테시안 조인)

8.11 조인 사용 시 문제점

8.12 스파크의 조인 수행 방식

8.13 정리



CHAPTER 9 데이터소스

9.1 데이터소스 API의 구조

9.2 CSV 파일

9.3 JSON 파일

9.4 파케이 파일

9.5 ORC 파일

9.6 SQL 데이터베이스

9.7 텍스트 파일

9.8 고급 I/O 개념

9.9 정리



CHAPTER 10 스파크 SQL

10.1 SQL이란

10.2 빅데이터와 SQL: 아파치 하이브

10.3 빅데이터와 SQL: 스파크 SQL

10.4 스파크 SQL 쿼리 실행 방법

10.5 카탈로그

10.6 테이블

10.7 뷰

10.8 데이터베이스

10.9 select 구문

10.10 고급 주제

10.11 다양한 기능

10.12 정리



CHAPTER 11 Dataset

11.1 Dataset을 사용할 시기

11.2 Dataset 생성

11.3 액션

11.4 트랜스포메이션

11.5 조인

11.6 그룹화와 집계

11.7 정리



Part 3 저수준 API



CHAPTER 12 RDD

12.1 저수준 API란

12.2 RDD 개요

12.3 RDD 생성하기

12.4 RDD 다루기

12.5 트랜스포메이션

12.6 액션

12.7 파일 저장하기

12.8 캐싱

12.9 체크포인팅

12.10 RDD를 시스템 명령으로 전송하기

12.11 정리



CHAPTER 13 RDD 고급 개념

13.1 키-값 형태의 기초(키-값 형태의 RDD)

13.2 집계

13.3 cogroup

13.4 조인

13.5 파티션 제어하기

13.6 사용자 정의 직렬화

13.7 정리



CHAPTER 14 분산형 공유 변수

14.1 브로드캐스트 변수

14.2 어큐뮬레이터

14.3 정리



Part 4 운영용 애플리케이션



CHAPTER 15 클러스터에서 스파크 실행하기

15.1 스파크 애플리케이션의 아키텍처

15.2 스파크 애플리케이션의 생애주기(스파크 외부)

15.3 스파크 애플리케이션의 생애주기(스파크 내부)

15.4 세부 실행 과정

15.5 정리



CHAPTER 16 스파크 애플리케이션 개발하기

16.1 스파크 애플리케이션 작성하기

16.2 스파크 애플리케이션 테스트

16.3 개발 프로세스

16.4 애플리케이션 시작하기

16.5 애플리케이션 환경 설정하기

16.6 정리



CHAPTER 17 스파크 배포 환경

17.1 스파크 애플리케이션 실행을 위한 클러스터 환경

17.2 클러스터 매니저

17.3 기타 고려사항

17.4 정리



CHAPTER 18 모니터링과 디버깅

18.1 모니터링 범위

18.2 모니터링 대상

18.3 스파크 로그

18.4 스파크 UI

18.5 디버깅 및 스파크 응급 처치

18.6 정리



CHAPTER 19 성능 튜닝

19.1 간접적인 성능 향상 기법

19.2 직접적인 성능 향상 기법

19.3 정리



Part 5 스트리밍



CHAPTER 20 스트림 처리의 기초

20.1 스트림 처리란

20.2 스트림 처리의 핵심 설계 개념

20.3 스파크의 스트리밍 API

20.4 정리



CHAPTER 21 구조적 스트리밍의 기초

21.1 구조적 스트리밍의 기초

21.2 핵심 개념

21.3 구조적 스트리밍 활용

21.4 스트림 트랜스포메이션

21.5 입력과 출력

21.6 스트리밍 Dataset API

21.7 정리



CHAPTER 22 이벤트 시간과 상태 기반 처리

22.1 이벤트 시간 처리

22.2 상태 기반 처리

22.3 임의적인 상태 기반 처리

22.4 이벤트 시간 처리의 기본

22.5 이벤트 시간 윈도우

22.6 스트림에서 중복 데이터 제거하기

22.7 임의적인 상태 기반 처리

22.8 정리



CHAPTER 23 운영 환경에서의 구조적 스트리밍

23.1 내고장성과 체크포인팅

23.2 애플리케이션 변경하기

23.3 메트릭과 모니터링

23.4 알림

23.5 스트리밍 리스너를 사용한 고급 모니터링

23.6 정리



Part 6 고급 분석과 머신러닝



CHAPTER 24 고급 분석과 머신러닝 개요

24.1 고급 분석에 대한 짧은 입문서

24.2 스파크의 고급 분석 툴킷

24.3 고수준 MLlib의 개념

24.4 MLlib 실제로 사용하기

24.5 모델 배포 방식

24.6 정리



CHAPTER 25 데이터 전처리 및 피처 엔지니어링

25.1 사용 목적에 따라 모델 서식 지정하기

25.2 변환자

25.3 전처리 추정자

25.4 고수준 변환자

25.5 연속형 특징 처리하기

25.6 범주형 특징 처리하기

25.7 텍스트 데이터 변환자

25.8 특징 조작하기

25.9 특징 선택

25.10 고급 주제

25.11 정리



CHAPTER 26 분류

26.1 활용 사례

26.2 분류 유형

26.3 MLlib의 분류 모델

26.4 로지스틱 회귀

26.5 의사결정트리

26.6 랜덤 포레스트와 그래디언트 부스티드 트리

26.7 나이브 베이즈

26.8 분류와 자동 모델 튜닝을 위한 평가기

26.9 세부 평가지표

26.10 일대다 분류기

26.11 다층 퍼셉트론

26.12 정리



CHAPTER 27 회귀

27.1 활용 사례

27.2 MLlib에서 제공하는 회귀 모델

27.3 선형 회귀

27.4 일반화 선형 회귀

27.5 의사결정트리

27.6 랜덤 포레스트와 그래디언트 부스티드 트리

27.7 고급 방법론

27.8 평가기와 모델 튜닝 자동화

27.9 평가지표

27.10 정리



CHAPTER 28 추천

28.1 활용 사례

28.2 교차최소제곱 알고리즘을 사용하여 협업 필터링 구현하기

28.3 추천을 위한 평가기

28.4 성과 평가지표

28.5 빈발 패턴 마이닝

28.6 정리



CHAPTER 29 비지도 학습

29.1 활용 사례

29.2 모델 확장성

29.3 k-평균

29.4 이분법 k-평균

29.5 가우시안 혼합 모델

29.6 잠재 디리클레 할당

29.7 정리



CHAPTER 30 그래프 분석

30.1 그래프 작성하기

30.2 그래프 쿼리하기

30.3 모티프 찾기

30.4 그래프 알고리즘

30.5 정리



CHAPTER 31 딥러닝

31.1 딥러닝이란

31.2 스파크에서 딥러닝을 사용하는 방법

31.3 딥러닝 라이브러리

31.4 딥러닝 파이프라인을 사용한 간단한 예제

31.5 정리



Part 7 에코시스템



CHAPTER 32 언어별 특성: 파이썬(PySpark)과 R(SparkR, sparklyr)

32.1 PySpark

32.2 R로 스파크 사용하기

32.3 정리



CHAPTER 33 에코시스템과 커뮤니티

33.1 스파크 패키지

33.2 커뮤니티

33.3 정리



부록 A 스파크 설치 및 실행

부록 B 더블린 원정대: 스파크 서밋 2017 더블린 참관기

한줄 서평